Citrus Residues Isolates Improve Astaxanthin Production by Xanthophyllomyces dendrorhous

Wei Wu^{a,b}, Mingbo Lu^{a,*}, and Longjiang Yu^{a,*}

- ^a School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. Fax: +86 27 87 79 22 65. E-mail: yulongjiang@mail.hust.edu.cn or mbluwh@gmail.com
- b School of Medicine, Huangshi Institute of Technology, Huangshi 435000, P. R. China
- * Authors for correspondence and reprint requests

* Authors for correspondence and reprint requests

Z. Naturforsch. **65 c**, 594–598 (2010); received February 26/April 12, 2010

The wild strain and two astaxanthin-overproducing mutant strains, W618 and GNG274, of *Xanthophyllomyces dendrorhous* were analyzed in order to assess their ability to grow and synthesize astaxanthin in a minimal medium containing (per liter): 2 g KH₂PO₄, 0.5 g MgSO₄, 2 g KNO₃, and 1 g yeast extract, and supplemented with citrus residues isolates as a carbon source (citrus medium). The selected strain W618 was evaluated under various contents of citrus juice. At the content of 20% (v/v), the highest astaxanthin production reached 22.63 mg L⁻¹, which was two-fold more than that observed in yeast malt medium.

Addition of 8% (v/v) *n*-hexadecane to the citrus medium was found to be optimal, increasing the astaxanthin yield by 21.7%.

Key words: Astaxanthin, **Xanthophyllomyces dendrorhous, Citrus Residue